quarta-feira, 10 de abril de 2019


Princípio de Le Châtelier, postulado pelo químico industrial francês Henri Louis Le Châtelier (1850-1936), estabelece que:
"Se for imposta uma alteração, de concentrações, de temperatura ou de pressão, a um sistema químico em equilíbrio, a composição do sistema deslocar-se-á no sentido de contrariar a alteração a que foi sujeita."

    Concentração

    O aumento do valor da concentração de um componente do sistema, é seguido do consumo desse componente até se atingir um novo estado de equilíbrio. Já a diminuição do valor da concentração de um componente do sistema é seguida do consumo dos componentes do lado oposto do mesmo, até se atingir um novo estado de equilíbrio.
    Quando há um aumento da concentração de um ou mais reagentes, o sistema evolui no sentido direto de forma a diminuir a sua concentração, ao contrário dos produtos.
    Por outro lado, quando há uma diminuição da concentração de um ou mais reagentes, o sistema volta ao estado de equilíbrio, deslocando-se a reação no sentido inverso, diminuindo a concentração dos produtos e aumentando a dos reagentes para que se atinja novamente o estado de equilíbrio. O mesmo acontece no caso inverso.
    Ou seja, tomando-se como exemplo a reação de síntese da amônia indicada abaixo, observe as seguintes alterações:
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Ao se aumentar a concentração de gás nitrogênio (N2) o equilíbrio será deslocado no sentido oposto ao que sofreu esse aumento, ou seja, seria deslocado no sentido direto da reação (deslocamento para a direita), favorecendo a formação de produtos, aumentando assim a quantidade de amônia (NH3) formada e consequentemente reduzindo a quantidade de gás hidrogênio (H2).
    Fator contrário seria observado ao se reduzir a concentração de gás hidrogênio (H2). A redução de concentração desse reagente deslocaria o equilíbrio para o mesmo lado que sofre a diminuição, fazendo com que o equilíbrio seja deslocado no sentido inverso (deslocamento para a esquerda), desfavorecendo a formação de produtos, isto é, a produção de amônia é aumentada em altos valores de concentração de gás hidrogênio, mas não é favorecida em baixas quantidades, tanto do gás hidrogênio, como do gás nitrogênio. Em outras palavras, pode-se afirmar que o rendimento da reação diminui com essa diminuição da concentração de H2.

    Temperatura[editar | editar código-fonte]

    Para a temperatura, deve-se atentar para a classificação da reação quanto a mesma ser exotérmica ou endotérmica. Vale ressaltar que reações exotérmicas são aquelas que liberam calor (ΔH negativo), enquanto reações endotérmicas absorvem calor (ΔH positivo).
    Quando há um aumento da temperatura, o equilíbrio químico é deslocando no sentido endotérmico da reação química.
    Ao se realizar diminuições nos valores de temperatura, o equilíbrio químico é deslocado no sentido exotérmico da reação química.
    Observe a reação química abaixo:
     + Energia
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Observa-se que trata-se de uma reação exotérmica por produzir calor (liberar calor), e com isso o valor de ΔH será negativo.Como a reação química é exotérmica, o sentido direto é exotérmico e o sentido inverso da reação é endotérmico.
    Ao se aumentar a temperatura do sistema, o equilíbrio se deslocará no sentido endotérmico da reação, que é o sentido inverso. Nesse caso, pode-se visualizar que o aumento da temperatura não favorece a formação de produtos. Ao aumentar a temperatura para a reação química mencionada acima, o equilíbrio é deslocado no sentido dos reagentes (lado esquerdo), aumentando a concentração dos gases hidrogênio e nitrogênio (H2 e N2), reduzindo a quantidade de amônia (NH3) formada.
    Efeito contrário é observado sob baixas temperaturas, onde em menores temperaturas o equilíbrio é deslocado no sentido exotérmico da reação, que é o sentido direto (lado direito da reação), favorecendo a formação de amônia, e sendo assim, aumentando a quantidade de amônia formada.

    Pressão[editar | editar código-fonte]

    Algumas fórmulas, tais como a equação de Clapeyron, que diz que P . V = n . R . T, nos dizem que pressão e volume são inversamente proporcionais. Isso é realmente válido. Ao diminuir o volume de um sistema, pode-se dizer que aumenta-se a pressão dele. Para o deslocamento de equilíbrio, a mesma lógica seguirá. Ao se diminuir a pressão de um sistema, o equilíbrio será deslocado no sentido de volume estequiométrico (maior número de mols no estado gasoso). Enquanto isso, com o aumento da pressão do sistema, o equilíbrio é deslocado no sentido de menor volume estequiométrico (maior número de mols no estado gasoso).
    Quando recorremos a mesma reação de síntese de amônia dos exemplos anteriores, podemos observar a relação da pressão com o deslocamento de equilíbrio.
    X
    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D
    Percebe-se que no lado dos reagentes, há a presença de 4 mols no estado gasoso e no lado dos produtos, apenas 2 mols no estado gasoso.
    Ao se aumentar a pressão desse sistema, poderíamos afirmar que o equilíbrio seria deslocado no sentido que possui o menor número de mols, sendo esse o sentido direto, sentido de formação de produtos, aumentando a quantidade de amônia formada (NH3).
    Quando se diminui a pressão do sistema, pode-se afirmar que o equilíbrio químico será deslocado no sentido inverso da reação química, desfavorecendo a produção da amônia (NH3).















    observação: é usado textos da wikipédia para mostrar as modificações com as variáveis do sistema decadimensional e categorial Graceli.



    teoria da relatividade categorial Graceli

    ENERGIA, MASSA, FENÔMENOS, ESPAÇO, TEMPO, INTERAÇÕES, TRANSFORMAÇÕES, CONDUTIVIDADE, EMISSÕES, ABSORÇÕES, DIFRAÇÃO, MOMENTUM.


    Δe, ΔM, Δf, ΔE, Δt, Δi, ΔT, ΔC, ΔE,ΔA, ΔD, ΔM......  =
    x
    sistema de dez dimensões de Graceli.
    x
    sistema de transições de estados, e estados  de Graceli, 
    x
    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D











    NO SISTEMA CATEGORIAL DE GRACELI TODO TIPO DE MOVIMENTO TEM AÇÃO TRANSFORMADORA  [como os outros elementos, como temperatura, radioatividade, luz, e outros],SOBRE ESTRUTURAS E ENERGIAS, TEMPO E ESPAÇO, INÉRCIA E GRAVIDADE, LUZ .


    Estados de Graceli de matéria, energias, momentuns, inércias, e entropias.


    Estados térmico.
    Estado quântico.
    De dilatação.
    De entropia.
    De potencia de entropia e relação com dilatação.
    De magnetismo [correntes, momentum e condutividades]..
    De eletricidade [correntes, momentum e condutividades].
    De condutividade.
    De mometum e fluxos variados.
    De potencial inercial da matéria e energia.
    De transformação.
    De comportamento de cargas e interações com elétrons.
    De emaranhamentos e transemaranhamentos.
    De paridades e transparidades.
    De radiação.
    Radioatividade.
    De radioisótopos.
    De relação entre radioatividade, radiação, eletromagnetismo e termoentropia.
    De capacidade e potencialidade de resistir a pressão, a capacidade de resistir a pressão e transformar em entropia e momentum.

    De resistir à temperaturas.
    E transformar em dilatação, interações entre partículas, energias e campos.
    Estado dos padrões de variações e efeitos variacionais.
    Estado de incerteza dos fenômenos e entre as suas interações.


    E outros estados de matéria, energia, momentum, tipos de inércia [como de inércia potencial de energias magnética, elétrica, forte e fraca, dinâmica, geométrica [côncava, convexa e plana] em sistema.


    E que todos estes tipos de estados tendem a ter ações de uns sobre os outros, formando um aglomerado de fenômenos de efeitos na produção de novas causas. E de efeitos variacionais de uns sobre os outros, ou seja, um sistema integrado.



    Sobre padrões de entropia.

    Mesmo havendo uma desordem, esta desordem segue alguns parâmetros futuros e que dependem de condições dos estados de Graceli, ou seja, a desordem segue alguns padrões e ordens conforme avança e passa por fases e agentes fenomênicos, estruturais e geométricos.


    Porem, a reversibilidade se torna impossível, aumenta a instabilidade e as incertezas de posição, intensidade, variações, efeitos e outros fenômenos conforme as próprias intensidades de dilatações, e agentes e estados envolvidos.


    Levando em consideração que mesmo havendo ordem não é possível a reversibilidade do estado e condições em que se encontravam a energia, matéria, momentum, inércias, dimensões, e outros agentes.


    A temperatura pode voltar ao seu lugar e ao seu ponto inicial, mas não as estruturas das partículas, as intensidades infinitésimas de padrões de energias, e nem o grau de oscilações que a energias, as interações, as transformações que passam estas partículas e suas energias, estruturas e interações, e as interações e intensidades de grau de variação de cada agente.


    Porem, a desordem é temporal, ou seja, com o passar do tempo outras ordens e padrões se afirmarão.


    Sendo que também a entropia varia conforme intensidade de instabilidade por tempo. E tempo por intensidade de instabilidade.


    Assim, segue efeitos variacionais e de incertezas por instabilidade de energia adicionada, e de tempo.


    Ou seja, uma grande instabilidade e desordem em pouco tempo vai levar a uma grande e instável por mais tempo uma entropia.


    Do que um grande tempo com pequena intensidade de instabilidade e energia adicionada num sistema ou numa variação térmica.


    Ou mesmo numa variação eletromagnética, ou mesmo na condutividade.


    Princípio tempo instabilidade de Graceli.

    Assim, a desordem acaba por encontrar uma ordem se não acontecer nenhuma instabilidade novamente. Pois, as partículas e energias tendem a se reorganizar novamente conforme o passar do tempo,  e esta reorganização segue um efeito progressivo em relação à desordem e tempo. Como os vistos acima.


    Ou seja, aquela organização anterior não vai mais acontecer, pois, segue o princípio da irreversibilidade, mas outras organizações se formarão conforme avança o tempo de estabilidade.


    as dimensões categorias podem ser divididas em cinco formas diversificadas.

    tipos, níveis, potenciais, tempo de ação, especificidades de transições de energias, de fenômenos, de estados de energias, físicos [estruturais], de fenômenos, estados quântico, e outros.



    paradox of the system of ten dimensions and categories of Graceli.



    a four-dimensional system can not define all the energies, changes of structures, states and phenomena within a structure, that is why there are ten or more dimensions, I have developed and I work with ten, but nature certainly goes beyond ten, with this we move to a decadimensional and categorial universe.



    that is, categories ground the variables of phenomena and their interactions and transformations.



    and with this we do not have a relationship with mass, but with structure, therefore, a structure carries with it much more than mass, since also mass is related to forces, inertia, resistances and energies.



    but structures are related to transitions of physical states, quantum, energies, phenomena, and others.



    as well as transitions of energies, phenomena, categories and dimensions.

    paradoxo do sistema de dez dimensões e categorias de Graceli.

    um sistema de quatro dimensões não tem como definir todas as energias, mudanças de estruturas, estados e fenômenos dentro de uma estrutura, por isto se tem dez ou mais dimensões, desenvolvi e trabalho com dez, mas a natureza com certeza vai alem das dez, com isto caminhamos para um universo decadimensional e categorial.

    ou seja, as categorias fundamentam as variáveis dos fenõmenos e suas interações e transformações.

    e com isto não se tem uma relação com massa, mas com estrutura, pois, uma estrutura carrega consigo muito mais do que massa, uma vez também que massa está relacionado com forças, inércia, resistências e energias.

    mas estruturas está relacionado com transições de estados físicos, quântico, de energias, de fenômenos, e outros.

    como também transições de energias, fenômenos, categorias e dimensões.







     = entropia reversível

    postulado categorial e decadimensional Graceli.

    TUDO QUE ESTÁ RELACIONADO COM ENERGIA, ESTRUTURAS, FENÔMENOS E DIMENSÕES ESTÁ INSERIDO NO SISTEMA DECADIMENSIONAL E CATEGORIAL GRACELI.


    todo sistema decadimensional e categorial é um sistema transcendente e indeterminado.
    matriz categorial Graceli.

    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    1] Cosmic space.
    2] Cosmic and quantum time.
    3] Structures.
    4] Energy.
    5] Phenomena.
    6] Potential.
    7] Phase transitions of physical [amorphous and crystalline] states and states of energies and phenomena of Graceli.
    8] Types and levels of magnetism [in paramagnetic, diamagnetic, ferromagnetic] and electricity, radioactivity [fissions and fusions], and light [laser, maser, incandescence, fluorescence, phosphorescence, and others.
    9] thermal specificity, other energies, and structure phenomena, and phase transitions.
    10] action time specificity in physical and quantum processes.




    Sistema decadimensional Graceli.

    1]Espaço cósmico.
    2]Tempo cósmico  e quântico.
    3]Estruturas.[isótopos, estrutura eletrônica, elementos químicos, amorfos e cristalinos, e, outros.
    4]Energias.
    5]Fenômenos.
    6]Potenciais., e potenciais de campos, de energias, de transições de estruturas e estados físicos, quãntico,  e estados de fenômenos e estados de transições, transformações e decaimentos.
    7]Transições de fases de estados físicos [amorfos e cristalinos] e estados de energias e fenômenos de Graceli.
    8]Tipos e níveis de magnetismo [em paramagnéticos, diamagnético, ferromagnéticos] e eletricidade, radioatividade [fissões e fusões], e luz [laser, maser, incandescências, fluorescências, fosforescências, e outros.
    9] especificidade térmica, de outras energias, e fenômenos das estruturas, e transições de fases.
    10] especificidade de tempo de ações em processos físicos e quântico.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             D


    Matriz categorial de Graceli.


    T l    T l     E l       Fl         dfG l   
    N l    El                 tf l
    P l    Ml                 tfefel 
    Ta l   Rl
             Ll
             Dl


    Tipos, níveis, potenciais, tempo de ação, temperatura, eletricidade, magnetismo, radioatividade, luminescências, dinâmicas, estruturas, fenômenos, transições de fenômenos e estados físicos, e estados de energias, dimensões fenomênicas de Graceli.

    [estruturas: isótopos, partículas, amorfos e cristalinos, paramagnéticos, dia, ferromagnéticos, e estados [físicos, quântico, de energias, de fenômenos, de transições, de interações, transformações e decaimentos, emissões e absorções, eletrostático, condutividade e fluidez]].
    trans-intermecânica de supercondutividade no sistema categorial de Graceli.

    EPG = d [hc] [T / IEEpei [pit] = [pTEMRLD] and [fao] [itd] [iicee] tetdvd [pe] cee [caG].]

    p it = potentials of interactions and transformations.
    Temperature divided by isotopes and physical states and potential states of energies and isotopes = emissions, random wave fluxes, ion interactions, charges and energies structures, tunnels and entanglements, transformations and decays, vibrations and dilations, electrostatic potential, conductivities, entropies and enthalpies. categories and agents of Graceli.

    h e = quantum index and speed of light.

    [pTEMRlD] = THERMAL, ELECTRICAL, MAGNETIC, RADIOACTIVE, Luminescence, DYNAMIC POTENTIAL] ..


    EPG = GRACELI POTENTIAL STATUS.

    [pTFE] = POTENCIAL DE TRANSIÇÕES DE FASES DE ESTADOS FÍSICOS E DE ENERGIAS E FANÔMENOS [TRANSIÇÕES DE GRACELI]

    , [pTEMRLD] [hc] [pI] [PF] [pIT][pTFE] [CG].